Forecast a model from the fable ATA model
# S3 method for ATA
forecast(
object,
new_data,
h = NULL,
ci_level = 95,
negative_forecast = TRUE,
onestep = FALSE,
...
)
The time series model used to produce the forecasts
A `tsibble` containing future information used to forecast.
The forecast horison (can be used instead of `new_data` for regular time series with no exogenous regressors).
Confidence Interval levels for forecasting. Default value is 95.
Negative values are allowed for forecasting. Default value is TRUE. If FALSE, all negative values for forecasting are set to 0.
Default is FALSE. if TRUE, the dynamic forecast strategy uses a one-step model multiple times `h` forecast horizon) where the prediction for the prior time step is used as an input for making a prediction on the following time step.
Other arguments
A vector of fitted residuals.
library(fable.ata)
as_tsibble(USAccDeaths) %>%
model(ata = AutoATA(value ~ trend("A") + season("M"))) %>% forecast(h=24)
#> # A fable: 24 x 4 [1M]
#> # Key: .model [1]
#> .model index value .mean
#> <chr> <mth> <dist> <dbl>
#> 1 ata 1979 Jan 8091.851 8092.
#> 2 ata 1979 Feb 7352.286 7352.
#> 3 ata 1979 Mar 8154.435 8154.
#> 4 ata 1979 Apr 8387.586 8388.
#> 5 ata 1979 May 9272.331 9272.
#> 6 ata 1979 Jun 9691.667 9692.
#> 7 ata 1979 Jul 10632.91 10633.
#> 8 ata 1979 Aug 9921.513 9922.
#> 9 ata 1979 Sep 8799.18 8799.
#> 10 ata 1979 Oct 9183.734 9184.
#> # ℹ 14 more rows