ATA.Forecast is a generic function for forecasting of the ATA Method.

ATA.Forecast(
  object,
  h = NULL,
  out.sample = NULL,
  ci.level = 95,
  negative.forecast = TRUE,
  onestep = FALSE,
  print.out = TRUE
)

Arguments

object

An ata object is required for forecast.

h

Number of periods for forecasting.

out.sample

A numeric vector or time series of class ts or msts for out-sample.

ci.level

Confidence Interval levels for forecasting. Default value is 95.

negative.forecast

Negative values are allowed for forecasting. Default value is TRUE. If FALSE, all negative values for forecasting are set to 0.

onestep

Default is FALSE. if TRUE, the dynamic forecast strategy uses a one-step model multiple times (h forecast horizon) where the prediction for the prior time step is used as an input for making a prediction on the following time step.

print.out

Default is TRUE. If FALSE, forecast summary of ATA Method is not shown.

Value

An object of class ata and forecast values.

References

#'Yapar G, Yavuz I, Selamlar HT (2017). “Why and How Does Exponential Smoothing Fail? An In Depth Comparison of ATA-Simple and Simple Exponential Smoothing.” Turkish Journal of Forecasting, 1(1), 30--39.

#'Yapar G, Capar S, Selamlar HT, Yavuz I (2018). “Modified Holt's Linear Trend Method.” Hacettepe University Journal of Mathematics and Statistics, 47(5), 1394--1403.

#'Yapar G (2018). “Modified simple exponential smoothing.” Hacettepe University Journal of Mathematics and Statistics, 47(3), 741--754.

#'Yapar G, Selamlar HT, Capar S, Yavuz I (2019). “ATA method.” Hacettepe Journal of Mathematics and Statistics, 48(6), 1838-1844.

See also

forecast, stlplus, stR, stl, decompose, tbats, seasadj.

Author

Ali Sabri Taylan and Hanife Taylan Selamlar

Examples

trainATA <-  head(touristTR, 84)
ata_fit <- ATA(trainATA, parPHI = 1, seasonal.test = TRUE, seasonal.model = "decomp")

#> ATA(2,2,1) (A,M,M) 
#> 
#>    model.type: M 
#> 
#>    seasonal.model: decomp 
#> 
#>    seasonal.type: M 
#> 
#>    forecast horizon: 24 
#> 
#>    accuracy.type: sMAPE 
#> 
#> Model Fitting Measures: 
#> 
#>               sigma2               loglik                  MAE 
#> 25327678645.19596481       -1188.55670094      106527.45549230 
#>                  MSE                 RMSE                  MPE 
#> 23496762116.62757874      153286.53599266           0.12753452 
#>                 MAPE                sMAPE                 MASE 
#>           4.04068178           4.04508846           0.23313082 
#>                  OWA 
#>           0.00000468 
#> 
#> In-Sample Accuracy Measures: 
#> 
#>               MdAE               MdSE              RMdSE               MdPE 
#>      67333.7563803 4533834748.2874908      67333.7563803          0.4018348 
#>              MdAPE             sMdAPE 
#>          3.2125716          3.2275752 
#> 
#> Out-Sample Accuracy Measures: 
#> 
#>   MAE   MSE  RMSE   MPE  MAPE sMAPE  MASE   OWA 
#>    NA    NA    NA    NA    NA    NA    NA    NA 
#> 
#> Out-Sample Accuracy Measures: 
#> 
#>   MdAE   MdSE  RMdSE   MdPE  MdAPE sMdAPE 
#>     NA     NA     NA     NA     NA     NA 
#> 
#> Information Criteria: 
#> 
#>      AIC     AICc      BIC 
#> 2391.113 2392.587 2408.129 
#> 
#> 
#>    user  system elapsed 
#>   0.058   0.007   0.064 
#> 
#> calculation.time: 0.0645 
#> 
#> 
#> Forecasts: 
#> Time Series:
#> Start = 2015.00694444444 
#> End = 2016.92361111111 
#> Frequency = 12 
#>  [1] 1288568 1211322 1716223 2292963 3589547 4283724 5018661 5887346 4933780
#> [10] 4253560 2170497 1480814 1363260 1281536 1815704 2425875 3797616 4532031
#> [19] 5309568 6228607 5219767 4500118 2296310 1566650
#> 
#> 
ata_fc <- ATA.Forecast(ata_fit, h=12)
#> Time Series:
#> Start = 2015.00694444444 
#> End = 2015.92361111111 
#> Frequency = 12 
#>        lower forecast   upper
#> 2015  969867  1271754 1573641
#> 2015  768220  1195153 1622086
#> 2015 1169918  1692802 2215686
#> 2015 1657210  2260985 2864759
#> 2015 2863372  3538412 4213452
#> 2015 3481949  4221419 4960888
#> 2016 4145447  4944165 5742884
#> 2016 4944330  5798196 6652062
#> 2016 3951934  4857595 5763257
#> 2016 3231957  4186608 5141259
#> 2016 1134438  2135685 3136931
#> 2016  410853  1456621 2502389